Review exercises

1 Exponentials

2 Derivatives

3 Probability

Exponentials

Definition

$y=b^{x} \quad b>0$ and $b \neq 1$

Natural exponential base e

$$
e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x} \approx 2.718
$$

Logarithms
$y=\log _{b} x$ such that $b^{y}=x$

Natural logarithm: $\ln (x)$
$y=\ln (x)$ iff $e^{y}=x \quad x>0$
$\ln (1)=c$ such as $e^{c}=1$, and $\operatorname{In}(e)=c$ such as $e^{c}=e$

Rules

$\forall a, b \in \mathbb{R}+$ and $x, y \in \mathbb{R}$, the following rules apply:
■ Equality: $b^{x}=b^{y}$ iff $x=y$

- Power: $\left(b^{x}\right)^{y}=b^{x y}$

■ Product: $b^{x} b^{y}=b^{x+y}$

- Quotient: $\frac{b^{x}}{b^{y}}=b^{x-y}$
- Multiplication: $(a b)^{x}=a^{x} b^{x}$
- Division: $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$

Session 3, Example 1: Population growth

Consider an initial population of 6.1 billion people at $P(0)=2000$, and a constant annual growth rate of 1.4%. Find $P(t)$.

Session 3, Example 1: Population growth

Consider an initial population of 6.1 billion people at $P(0)=2000$, and a constant annual growth rate of 1.4%. Find $P(t)$.

$$
\begin{aligned}
P(0) & =6.1 \\
P(1) & =P(0) \times 1.014 \\
& =6.1 \times(1.014)^{1} \\
P(2) & =P(1) \times 1.014=[6.1 \times(1.014)] \times(1.014) \\
& =6.1 \times(1.014)^{2} \\
P(3) & =6.1 \times(1.014)^{3} \\
\vdots & \\
P(t) & =6.1 \times(1.014)^{t}
\end{aligned}
$$

Session 3, Example 5: Urban density

The population density at the centre of a city is 24,000 inhabitants. It then drops to 6,000 at a distance of 5 miles from the centre.

Session 3, Example 5: Urban density

The population density at the centre of a city is 24,000 inhabitants. It then drops to 6,000 at a distance of 5 miles from the centre. Express population as a function of the form $Q(x)=A e^{-k x}$ where x is the distance in miles from the centre.

Session 3, Example 5: Urban density

The population density at the centre of a city is 24,000 inhabitants. It then drops to 6,000 at a distance of 5 miles from the centre. Express population as a function of the form $Q(x)=A e^{-k x}$ where x is the distance in miles from the centre.

$$
\begin{aligned}
& \text { Solving } A: Q(0)=24 \rightarrow A e^{0}=A=24 \\
& \text { Solving } k: Q(5)=6 \rightarrow 6=24 e^{-5 k} \rightarrow \frac{1}{4}=e^{-5 k} \\
& \qquad \ln \frac{1}{4}=-5 k \rightarrow k=-\frac{\ln 1 / 4}{5} \approx .02
\end{aligned}
$$

Exponential function for population density: $Q(x)=24 e^{-.02 x}$.

Session 3, Example 5: Urban density

The population density at the centre of a city is 24,000 inhabitants. It then drops to 6,000 at a distance of 5 miles from the centre. Express population as a function of the form $Q(x)=A e^{-k x}$ where x is the distance in miles from the centre.

$$
\begin{aligned}
& \text { Solving } A: Q(0)=24 \rightarrow A e^{0}=A=24 \\
& \text { Solving } k: Q(5)=6 \rightarrow 6=24 e^{-5 k} \rightarrow \frac{1}{4}=e^{-5 k} \\
& \qquad \ln \frac{1}{4}=-5 k \rightarrow k=-\frac{\ln 1 / 4}{5} \approx .02
\end{aligned}
$$

Exponential function for population density: $Q(x)=24 e^{-.02 x}$.

Derivatives

Formula:

The derivative of $f(x)$ is the function $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
Slope of a tangent:
The point $(c, f(c))$ at $m_{t a n}=f^{\prime}(c)$ is the slope of the tangent line to the curve $y=f(x)$ at c.

Significance of the sign:

- $f(x)$ is increasing at $x=c$ if $f^{\prime}(c)>0$
- $f(x)$ is decreasing at $x=c$ if $f^{\prime}(c)<0$

Rules

Constant rule:
$\frac{d}{d x}[c]=0 \quad \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=0$ if $f(x)=c$
Power rule:
$\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$

Constant multiple rule:
$\frac{d}{d x}[c f(x)]=c \frac{d}{d x} f(x)$
Sum rule:
$\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)$

More rules

Product rule:
$\frac{d}{d x}[f(x) g(x)]=f(x) \cdot \frac{d}{d x}[g(x)]+g(x) \cdot \frac{d}{d x}[f(x)]$
Quotient rule:
$\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$

Second derivative

The derivative of order n is denoted $f^{(n)}(x)$. $f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}$ is the second derivative of $f^{\prime}(x)$.

Chain rule
If $y=f(u)$ and $u=g(x)$, then $f(g(x))=\frac{d y}{d x}=f^{\prime}(g(x)) g^{\prime}(x)$

Session 4, Example 2: Population growth

Consider a population for which the growth function is $P(t)=t^{3}+t^{2}+12 t+1,000$ million people per year.
Find the growth rate at $t=3$ and $t=4$, and the actual change in population at $t=4$.

Session 4, Example 2: Population growth

Consider a population for which the growth function is $P(t)=t^{3}+t^{2}+12 t+1,000$ million people per year.
Find the growth rate at $t=3$ and $t=4$, and the actual change in population at $t=4$.

$$
\begin{aligned}
P^{\prime}(t) & =3 t^{2}+2 t+12 \\
P^{\prime}(3) & =3(3)^{2}+2(3)+12=45 \text { people/year at } t=3 \\
P^{\prime}(4) & =3(4)^{2}+2(4)+12=68 \text { people/year at } t=4 \\
P(3) & =27+9+12(3)=1,072 \\
P(4) & =64+16+12(4)=1,128 \\
P(4)-P(3) & =56 \text { people/year at } t=4
\end{aligned}
$$

Application to population growth (continued)

Find the equations of the tangents at $t=3$ and $t=4$.

Application to population growth (continued)

Find the equations of the tangents at $t=3$ and $t=4$.

$$
\begin{aligned}
& P^{\prime}(3)=45 \\
& \text { at } t=3, y-f(3) \\
&=45(x-3) \\
& y=45 x-135+f(3)=45 x+937 \\
& P^{\prime}(4)=68 \\
& \text { at } t=4, y-f(4) \\
&=68(x-4) \\
& y=68 x-272+f(4)=68 x+856
\end{aligned}
$$

Session 4, Example 3: GDP growth rate

Consider a country with a GDP growth rate equal to $N(t)=t^{2}+5 t+101$, with $t_{0}=1998$. What is its GDP growth rate in 2008?

Session 4, Example 3: GDP growth rate

Consider a country with a GDP growth rate equal to $N(t)=t^{2}+5 t+101$, with $t_{0}=1998$. What is its GDP growth rate in 2008?

$$
\begin{aligned}
N^{\prime}(t) & =2 t+5 \\
N^{\prime}(10) & =2(10)+5=25 \text { billion dollars at } t=10
\end{aligned}
$$

Session 4, Example 3: GDP growth rate

Consider a country with a GDP growth rate equal to $N(t)=t^{2}+5 t+101$, with $t_{0}=1998$. What is its GDP growth rate in 2008?

$$
\begin{aligned}
N^{\prime}(t) & =2 t+5 \\
N^{\prime}(10) & =2(10)+5=25 \text { billion dollars at } t=10
\end{aligned}
$$

What is the relative growth rate of GDP in that same year?

Session 4, Example 3: GDP growth rate

Consider a country with a GDP growth rate equal to $N(t)=t^{2}+5 t+101$, with $t_{0}=1998$. What is its GDP growth rate in 2008?

$$
\begin{aligned}
N^{\prime}(t) & =2 t+5 \\
N^{\prime}(10) & =2(10)+5=25 \text { billion dollars at } t=10
\end{aligned}
$$

What is the relative growth rate of GDP in that same year?
At $t=10, N(10)=100+50+101=251$ and $N^{\prime}(10)=25$.
The relative growth rate $\frac{Q^{\prime}(x)}{Q(x)}=\frac{d Q / d x}{Q}$ is $\frac{25}{251} \approx 10 \%$ per year in that period.

Session 4, Example 5: Worker productivity

If a worker has a unit productivity function of $Q(t)=-t^{3}+6 t^{2}+24 t$ at $8 a m$, what is his unit productivity at 11 am , and at what rate is it changing by that time?

Session 4, Example 5: Worker productivity

If a worker has a unit productivity function of $Q(t)=-t^{3}+6 t^{2}+24 t$ at $8 a m$, what is his unit productivity at 11 am , and at what rate is it changing by that time?

Rate of production: $R(t)=Q^{\prime}(t)=-3 t^{2}+12 t+24$ of $Q(t)$.

Session 4, Example 5: Worker productivity

If a worker has a unit productivity function of
$Q(t)=-t^{3}+6 t^{2}+24 t$ at $8 a m$, what is his unit productivity at 11 am , and at what rate is it changing by that time?

Rate of production: $R(t)=Q^{\prime}(t)=-3 t^{2}+12 t+24$ of $Q(t)$.
At $t=3, R(3)=Q^{\prime}(3)=-3(3)^{2}+12(3)+24=33$ units/hour

Session 4, Example 5: Worker productivity

If a worker has a unit productivity function of
$Q(t)=-t^{3}+6 t^{2}+24 t$ at 8 am, what is his unit productivity at 11 am , and at what rate is it changing by that time?

Rate of production: $R(t)=Q^{\prime}(t)=-3 t^{2}+12 t+24$ of $Q(t)$.
At $t=3, R(3)=Q^{\prime}(3)=-3(3)^{2}+12(3)+24=33$ units/hour
The change in the rate of production is $R^{\prime}(t)=Q^{\prime \prime}(t)=-6 t+12$.

Session 4, Example 5: Worker productivity

If a worker has a unit productivity function of
$Q(t)=-t^{3}+6 t^{2}+24 t$ at $8 a m$, what is his unit productivity at 11 am , and at what rate is it changing by that time?

Rate of production: $R(t)=Q^{\prime}(t)=-3 t^{2}+12 t+24$ of $Q(t)$.
At $t=3, R(3)=Q^{\prime}(3)=-3(3)^{2}+12(3)+24=33$ units/hour
The change in the rate of production is $R^{\prime}(t)=Q^{\prime \prime}(t)=-6 t+12$.
At $t=3, R^{\prime}(3)=Q^{\prime \prime}(3)=-6(3)+12=-6$ units/hour
It might be a good idea to offer the worker a lunch break at that point.

Discrete probability

Probability of a random variable x

$$
P(x)=\frac{n(x)}{n(S)} \quad 0 \leq P \leq 1
$$

Expected value $E(x)$, or mean μ
The mean measures the average numerical outcome of x. $E(x)=\sum_{i=1}^{n} x_{i} P\left(x_{i}\right)$.

Variance $V(x)$ or σ^{2}, and standard deviation σ
Variability measures the squared sum of deviations from the mean. $V(x)=\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} P\left(x_{i}\right) \quad \sigma_{x}=\sqrt{V(x)}$

Continuous variables

Probability density function of x
$P(a \leq x \leq b)=\int_{a}^{b} f(x) \mathrm{d} x \quad \int_{\min }^{\max } f(x) \mathrm{d} x=1$

Standard normal distribution $\mathcal{N}(0,1)$

- approx. 68% of values at $\mu \pm 1 \sigma$
- approx. 95% of values at $\mu \pm 2 \sigma(Z=1.96)$
- approx. 99% of values at $\mu \pm 3 \sigma(Z=2.58)$

Standardized score: $Z=\frac{x-\mu}{\sigma} \quad$ Standard error: $S E M=\frac{\sigma}{\sqrt{N}}$

Standard normal distribution

Source: Diez et al. 2011

Bernoulli trials: successes over a dichotomous outcome

Bernoulli variable
p is the proportion of successes in $S=\{0,1\}$
$\mu=p \quad \sigma=\sqrt{p(1-p)}$
Probability of a single success after n trials
$(1-p)^{n-1} p$ (exponentially decreasing geometric distribution)

Mean, variance and standard deviation
$\mu=\frac{1}{p} \quad \sigma^{2}=\frac{1-p}{p^{2}} \quad \sigma=\sqrt{\frac{1-p}{p}}$

Binomial distribution: n independent Bernoulli trials

Probability of a single success k out of n trials
$P(x=1)=p^{k}(1-p)^{n-k}$
Probability of k successes
$P(x=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad\binom{n}{r}=\frac{n!}{r!(n-r)!}$
Mean, variance and standard deviation
$\mu=n p \quad \sigma^{2}=n p(1-p) \quad \sigma=\sqrt{n p(1-p)}$
Normal approximation
If $n p$ and $n(1-p)$ are both at least 10 , the approximate normal distribution has parameters corresponding to the mean and standard deviation of the binomial distribution.

Exercise with discrete probabilities

Exercise 1: Trader gains

A trader wins $\$ 500$ on 80% of his transactions and loses $\$ 1,000$ on 10% of them. (a) How much does he gain on average? (b) At what probability is his expected gain null?

Exercise with discrete probabilities

Exercise 1: Trader gains

A trader wins $\$ 500$ on 80% of his transactions and loses $\$ 1,000$ on 10% of them. (a) How much does he gain on average? (b) At what probability is his expected gain null?

$$
\begin{aligned}
E(x) & =\sum x p(x) \\
& =(.8)(500)+(.2)(-1000) \\
& =200
\end{aligned}
$$

(a) The trader expects to gain $\$ 200$ per transaction on average.
(b) $E(x)=0$ when $500(p)=1000(1-p)$, i.e. when $p=\frac{10}{15} \approx .6$.

Exercises with discrete probabilities

Exercise 2: Sexual transmission

If 40% of a population is contaminated with a sexual disease and sex acts occur at random, what percentage of sex acts poses a contamination risk?

Exercises with discrete probabilities

Exercise 2: Sexual transmission

If 40% of a population is contaminated with a sexual disease and sex acts occur at random, what percentage of sex acts poses a contamination risk?

$$
\begin{aligned}
& P\left(x_{1}=0, x_{2}=0\right)=(.6)(.6)=.36 \\
& P\left(x_{1}=1, x_{2}=1\right)=(.4)(.4)=.16 \\
& P\left(x_{1}=0, x_{2}=1\right)=(.6)(.4)=.24 \\
& P\left(x_{1}=1, x_{2}=0\right)=(.4)(.6)=.24
\end{aligned}
$$

If sex acts within the population are random, 48% of sex acts expose one of the partners $\left(x_{1}, x_{2}\right)$ to contamination.

Exercise with Bernoulli trials

Exercise 3: Equation review

Show that a Bernoulli variable has a mean of $\mu=p$ and a standard deviation of $\sigma=\sqrt{p(1-p)}$.

Exercise with Bernoulli trials

Exercise 3: Equation review

Show that a Bernoulli variable has a mean of $\mu=p$ and a standard deviation of $\sigma=\sqrt{p(1-p)}$.

$$
\begin{aligned}
\mu & =E(x)=0 \cdot P(x=0)+1 \cdot P(x=1) \\
& =0(1-p)+p=p \\
\sigma^{2} & =P(x=0)(0-p)^{2}+P(x=1)(1-p)^{2} \\
& =(1-p) p^{2}+p(1-p)^{2}=p(1-p)
\end{aligned}
$$

Bernoulli trials are 'one dimension' of binomial distributions, which are equivalent to running several independent Bernoulli trials; for a binomial distribution, $\mu=n p$ and $\sigma=\sqrt{n p(1-p)}$.

Exercises with binomial probabilities

Exercise 4: Death rate

If 10% of smokers die within fifteen years, calculate the probabilities that out of a random sample of 20 smokers, (a) none will die within 15 years. (b) at least one will die within 15 years.

Exercises with binomial probabilities

Exercise 4: Death rate

If 10% of smokers die within fifteen years, calculate the probabilities that out of a random sample of 20 smokers, (a) none will die within 15 years. (b) at least one will die within 15 years.

$$
\begin{aligned}
P(k) & =\binom{20}{k}(.10)^{k}(1-.10)^{20-k} \\
P(0) & =\binom{20}{0} \cdot .1^{0} \cdot(.9)^{2} 0=\approx .12 \\
P(x>0) & =1-P(0) \approx .88
\end{aligned}
$$

Exercises with binomial probabilities

Exercise 5: Probability sampling

Assume a sample of 50 people randomly selected from a population of which a third opposes homogamy. (a) Calculate the mean and standard deviation of opposition to gay marriage in the sample. (b) How likely is it that the sample contains a maximum of three opponents to gay marriage?

Exercises with binomial probabilities

Exercise 5: Probability sampling

Assume a sample of 50 people randomly selected from a population of which a third opposes homogamy. (a) Calculate the mean and standard deviation of opposition to gay marriage in the sample. (b) How likely is it that the sample contains a maximum of three opponents to gay marriage?

$$
\begin{aligned}
\mu & =n p=(50)(1 / 3) \approx 16 \\
\sigma^{2} & =n p(1-p)=(50)(1 / 3)(2 / 3) \approx 11 \quad \sigma \approx \sqrt{11} \approx 3.3
\end{aligned}
$$

(a) The sample will contain 16 opponents on average.
(b) It seems highly unlikely: given μ and σ, we would rather expect p to be within [$\mu-2 \sigma, \mu+2 \sigma$], somewhere around [10,22].

Exercises with binomial probabilities

Exercise 6: Survey response rates

Is it reasonable to expect that a survey method with a 20% response rate will produce over 2,500 responses from a sample of 20,000 households?

Exercises with binomial probabilities

Exercise 6: Survey response rates

Is it reasonable to expect that a survey method with a 20% response rate will produce over 2,500 responses from a sample of 20,000 households?

$$
\begin{aligned}
\mu & =n p=(20000)(.2)=4000 \\
\sigma^{2} & =n p(1-p)=(20000)(.2)(.8)=3200 \quad \sigma=\sqrt{3200} \approx 56
\end{aligned}
$$

The distribution approaches $\mathcal{N}(\mu=4000, \sigma=56)$, which makes $P(x=2500)$ an extremely likely outcome.

Exercise with sample size

Determining a margin of error

$$
Z \cdot \frac{\sigma}{\sqrt{N}} \leq M E
$$

Example: average number of sexual partners

How many people should we sample from a population where the number of sexual partners has an unknown mean and a standard deviation of 3 if we want a margin of error around 1 partner at 95% confidence?

Exercise with sample size

Determining a margin of error

$$
Z \cdot \frac{\sigma}{\sqrt{N}} \leq M E
$$

Example: average number of sexual partners

How many people should we sample from a population where the number of sexual partners has an unknown mean and a standard deviation of 3 if we want a margin of error around 1 partner at 95% confidence?

$$
1.96 \cdot \frac{\sigma}{\sqrt{N}} \leq 1 \quad 1.96 \cdot \frac{3}{1} \leq \sqrt{N} \quad(1.96 \cdot 3)^{2} \leq N \quad N \geq 35
$$

