Statistics: Estimation

1 Reminder: Continuous variables

- 2 Point estimation
- 3 Confidence intervals

http://f.briatte.org/teaching/math/

Reminder: Continuous variables

Probability density function of x

 $P(a \le x \le b) = \int_a^b f(x) \, \mathrm{d}x \quad \int_{min}^{max} f(x) \, \mathrm{d}x = 1$

Standard normal distribution $\mathcal{N}(0,1)$

- \blacksquare approx. 68% of values at $\mu\pm1\sigma$
- approx. 95% of values at $\mu \pm 2\sigma$
- approx. 99% of values at $\mu \pm 3\sigma$

Standardized score

$$Z = \frac{x-\mu}{\sigma}$$

The main puzzle

	Notation	
Parameter	Sample	Population
Mean	Ā	μ
Standard deviation	5	σ

The main solution: the properties of the standard normal distribution allow for statistical inference: the estimation, at a certain level of confidence, of the unobserved population parameters, using observed sample parameters.

Point estimation

Sample definitions

- \blacksquare the population mean μ is a population parameter
- the sample mean \bar{X} is a point estimate of μ
- we know the sample *n* and its mean \bar{X} , but we do not know μ and might not know the true population *N*

Sampling error

- **sampling variation** causes \bar{X} to vary
- the values of \bar{X} form a sampling distribution
- its standard deviation $\frac{\sigma}{\sqrt{n}}$ is the standard error of the mean (SEM), which is estimated from the sample

CLT and LLN

Central Limit Theorem (CLT)

For 'iid' (independent and identically distributed) random variables $X_1, X_2, ..., X_n$, the sampling distribution of the mean approximates a normal distribution as n > 30 increases.

$$\sqrt{N}\left(\frac{1}{N}\sum_{i=1}^{N}\bar{X}_{i}-\mu\right) \stackrel{d}{\rightarrow} \mathcal{N}(0, \sigma^{2})$$

Law of Large Numbers (LLN)

$$\frac{X_1 + X_2 + \dots + X_n}{n} = \mu$$

Standard normal distribution

Source: Diez et al. 2011

Standard normal distribution

Figure 4.10: The area between $-z^*$ and z^* increases as $|z^*|$ becomes larger. If the confidence level is 99%, we choose z^* such that 99% of the normal curve is between $-z^*$ and z^* , which corresponds to 0.5% in the lower tail and 0.5% in the upper tail: $z^* = 2.58$.

Confidence intervals

Confidence intervals

If the sampling distribution is approximately normal, fractions of the point estimates are contained within Z-scores:

- For a 95% CI: $\overline{X} 1.96 \cdot SEM, \overline{X} + 1.96 \cdot SEM$
- For a 99% CI: $\bar{X} 2.58 \cdot SEM, \bar{X} + 2.58 \cdot SEM$

Wider intervals trade precision for additional confidence.

Margin of error

The margin of error of the interval $\bar{X} \pm Z \cdot SEM$ is $Z \cdot SEM$.

Sanity check

Confidence intervals are estimations of the *population* parameter; they say nothing of the sample itself.

Homework

Read CK-12 handbook ch. 7-8 for next week

and enjoy the rest of your day.

Note: final stats exam will cover confidence intervals (Ch. 7) and hypothesis tests (Ch. 8). Histograms are part of the topic.