V *Data Management

.: -) R - W Ll

QUANTI 2 - S_e_s§|qn 4
S Y Frang0|s Briatte

https://en.wikipedia.org/wiki/Modern_Times_(film)

-~

/ Visualise

Tidy > Transform

T \ Model

/

\

- |

Results

BT Grolemund and Wickham

https://r4ds.had.co.nz/introduction.html

90% of dat ata analy5|s L
is data cleaning "

_ e T B
| 1 (and merging datasets)

“ e
.* \ .. ‘

https://twitter.com/ddoniolvalcroze/status/1356273527335251968

Data cleaning a.l.a. messy inputs

e.g. removing extra characters, filtering out undesired

(incomplete, corrupt...) data rows

e.g. open-ended fields (locations, professions, religions...)

in survey data, commercial databases

Lotus Notes

Corel Draw

Photoshop
Shown right: dataset from photo shop
Kazakhstan containing photo-shop

foto shop
self-reported knowledge fotoshop
of software by job-seekers foto-shop

fhoto shop
Source: Sergiy Radyakin fhoto-shop

fhotoshop

lotusnotes
lotus-notes
lotusnotus
lotus notus
lotus-notus
lotes-notes
lotesnotes
lotes notes

carel draw
orel draw
coreldraw
corldraw
corel-draw
corel draw
coral draw
corral draw

http://econpapers.repec.org/paper/boccsug09/08.htm

Data management beyond cleaning

e Datal/O Reading/Writing various inputs/outputs

e Reshaping Transforming the dataset structure

e Recoding Transforming values

e Subsetting Filtering out observations from the dataset

e Aggregating Summarising values by groups

More complex operations

~ Data Integration/Engineering

Extract, Transform, Load (ETL)

Simple is better than complex

Source

VE(X, t): Validation at Extre;?:t.
VDB(X' t): Validation at DB

[extracted/

Jextracted_failed/

v Monitor «

Data Lake

v v

Transform + Load

——
- Vos(x, t)

staging

[transformed/

Data Warehouse

main

a1ndwo)

28e1015

https://www.youtube.com/watch?v=pzfgbSfzhXg

How it fits in job taxonomies

Data Engineer vs Data Scientist

Data Engineer Data Scientist
e Develop scalable data architecture e Miningdata for patterns
o Streamline data acquisition o Statistical modeling
e Set up processes to bring together data e Predictive models using machine learning
e Clean corrupt data e Monitor business processes
e Well versed in cloud technology e Cleanoutliersindata

DataCamp INTRODUCTION TO DATA ENGINEERING

https://www.youtube.com/watch?v=ikZMVIWrSsc

Relevant professional skill set

e Relational Data Base/Stream Management Systems
(RDBMS/RDSMS) for data warehousing

e.g. SOL and variants, Amazon RedShift, Apache Kafka

involves learning data models/schemas and new DSLs
e Building fast, reproducible data pipelines/streams

required for (scientific, legal) reproducibility

might involve using some form of version control

might involve thinking of data like we think of code

e.g. Idempotency, data partitions as immutable objects

https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Amazon_Redshift
https://en.wikipedia.org/wiki/Apache_Kafka
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Version_control
https://www.youtube.com/watch?v=4Spo2QRTz1k
https://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning
https://en.wikipedia.org/wiki/Immutable_object

More prosaically for us

e Accessing the data (sources, datasets)

e Understanding the data (codebooks, variables/values)
e Reading/Writing the data (formats, object types)

e Manipulating the data (basic principles, packages)

e Coding as much of the entire operation as possible

e Accepting that data input and coding are often
o Expecting that RIUIF=RTINIGEY badly and often

condom use is astoundingly high, close to 85 per cent. This is
worth passing on to my colleagues over beer and jazz. I'm
already out of my chair, just about to shut down my comput-
er, when my eye falls on the scrappy code sheet. Wait, these
data are raw, they are still coded 1 = yes, 2 = no.

When my data are nice and tidy, with the standard O = no,
1 = yes codes, my ‘yes’ row is always at the bottom of the
table, so that’s where my key percentage is. Because my data
weren’t coded, the results were ‘upside down’ for me, and I
had read them wrong. Not 20 per cent buying sex but 80 per
cent-the highest we have ever seen anywhere in the world.
Not 85 per cent using condoms but 85 per cent having
unprotected sex-right at the bottom of the global league
table.* I slumped back down into my chair, my head in my
hands. I admit I wanted some bad news. But I never con-
ceived of anything this bad. Be careful what you wish for.

https://www.wisdomofwhores.com/

CHECK ITOUT-L MADE A | | 15 IT A GIANT HOUSE OF CARDS IT... MIGHT NOT GE.

FULLY AUTOMATED DATA | | BUILT FROM RANDOM SCRIPTS i
PIPELINE THAT COLLECTS | | THAT WILL ALL COMPLETELY T GUESS THATS SOMETH
AND PROCESSES ALL THE | | COLLAPSE THE MOMENT ANY JHOOPS, JUST
INFORMATION UENEED. | | INPUT DOES ANYTHING UEIRD? COLLAPSED, HANG

ON, I CAN PATCH IT.

WMRTT % | BT

related: “Covid: how Excel may have caused loss of 16,000 test results in England”

https://xkcd.com/2054/
https://www.theguardian.com/politics/2020/oct/05/how-excel-may-have-caused-loss-of-16000-covid-tests-in-england

Dataset/file formats

gesis s @ login (3 Englisch
NIGEN GESIS durchsuchen... v

Angebot Forschung Institut

< Zuruck

©

European Parliament Election Study 2019, Voter Study

Schmitt, Hermann; Hobolt, Sara B.; van der Brug, Wouter Eri;;
GESIS Datenarchiv, Koln. ZA7581 Datenfile Version 1.0.0, https://doi.org/10.4232/1.13473 Xindl
Primarforscher/ Wissenschaftlicher Beirat, Institution: Schmitt, Hermann - MZES, University of T
Mannheim | Hobolt, Sara B. - London School of Economics| van der Brug, Wouter - University of Zi_tie

Amsterdam| Popa, Sebastian Adrian - Newcastle University & MZES, University of Mannheim
Herausgeber: GESIS Data Archive

Studiennummer: ZA7581

Aktuelle Version: 1.0.0, 2020-05-06, https://doi.org/10.4232/1.13473

DOI: 10.4232/1.13473

Publikationsjahr: 2020

Erhebungszeitraum: 14.06.2015 - 07.11.201%

https://search.gesis.org/research_data/ZA7581

W Developer - Q signin

What's new in Twitter API v2

Condensed default Tweet and user objects

A fields query parameter to request desired object fields

Poll, place, media metadata available to request within the Tweet payload
Metrics and annotations available in the Tweet payload

Anew conversation id field to help you track Tweets included in a
conversation

The default Tweet object that is delivered with our endpoints is limited to just the id

and text fields.

W e

"data": {
"1d": "1212092627178287104",
"text": "These launches would not be possible without the fe:

https://developer.twitter.com/en/docs/twitter-api/data-dictionary/introduction

Kinds of data structures

e Rectangular a.k.a. flat’ tabular datasets
CSV [TSV — comma / tab -separated (not that great)
XLSX — recent Microsoft Excel format (open)
XLS — old Microsoft Excel format

e Semantic a.k.a. markup languages
HTML / XML — <attribute>value</attribute>
JSON — "basics”™ : { "sex" : "F", "age" : 20 }

e Databases (DBs) — see end of slides

https://www.w3.org/TR/tabular-data-model/
https://tools.ietf.org/html/rfc4180
http://www.johnmyleswhite.com/notebook/2016/09/23/no-juice-for-you-csv-format-it-just-makes-you-more-awful/

Version control on a [EIGR{EY (A dataset

@
Current Repository - ¢y Current Branch v 4 Push origin R
* ep-turnout T master
Changes 37 History data/eb-satisfaction-aggregates.tsv []
v 37 changed files 132 144 LvA 2014 7 0.3677700114620074
¥ 08-covariate-mood.r || 133 145 LvA 2019 10 0.5108114390999395
: : : 146 +MLT 1979 1 ©.6620278330019881
¥ 09-covariate-constituencies.r o e
134 147 MLT 2004 2 NA
¥ 99-aggregate-data-sources.r [¢] 135 148 MLT 2009 4 0.49125948103792416
136 149 MLT 2014 7 0.5511228170626968
¥ BO-aggregate.R
@@ -140,10 +153,11 @@ NLD 1984 8 0.5567897081083634
¥ B1-models.R 140 153 NLD 1989 10 0.6096628620401133
¥ data/covariate-constituencies.tsv s 3» ot s A8 SCOES0eAR ARl el
142 155 NLD 1999 P 0.7119350135974796
v data/eb-satisfaction-aggregates-tsv E] 143 -NLD 2004 8 0.694861220970008
@ data/eb-satisfaction-with-democracy.x... [¢] 156 LD 2004 9 0.7116631332369571
144 157 NLD 2009 4 0.7429051935831186
B data/elections-ep-only.tsv [] 145 158 NLD 2014 7 0.7416267765711541
@ data/ep-election-constituencies.xlsx A0 159 NLD 2019 10 0.7839015732685193
160 +poL 1987 1 0.6599999999999999
R LB, 1 161 poL 2004 8 NA
?, Summary (requirec _ s
> 148 162 poL 2009 4 0.36269194194194193
Description 149 163 poL 2014 7 ©0.5870740687883545
@@ -153,17 +167,20 @@ PRT 1989 4 0.5638926426426426
153 167 PRT 1994 10 0.6382052554052554
154 168 PRT 1999 2 0.522032155490322
54 155 169 PRT 2004 8 0.4049642187974381
170 +PRT 2007 0.6785714285714286

-y ATl R Rl SN

)

https://desktop.github.com/

Less control on RILEIRAiLE] e.c. Excel, Stata, SPSS

Current Repository - l-’ Current Branch - 4 Push origin
= ep-turnout “ master Last fetched 2 minutes ago
Changes 37 History data/eb-satisfaction-with-democracy.xlsx []

v 37 changed files
¥ 08-covariate-mood.r |®]

¥ 09-covariate-constituencies.r

¥ 99-aggregate-data-sources.r [¢]
¥ BO-aggregate.R

¥ B1-models.R

¥ data/covariate-constituencies.tsv

¥ data/eb-satisfaction-aggregates.tsv [e]

[e]

v data/eb-satisfaction-with-democracy.x...
¥ data/elections-ep-only.tsv [e] This binary file has changed.

¥ data/ep-election-constituencies.xlsx

f, Summary (required)

i+

https://desktop.github.com/

Memo to Reinhart and Rogoff: | think it’s best to admit
your errors and go on from there

Posted by Andrew on 16 April 2013, 10:53 pm

< B (e
2 |
3 |

4 |Country
26 |

another issue

with spreadsheet
data — errors in

user-invisible
it 500 manipulations

11970-2009
| 1949-2009 4.9 2.7 3.0 n.a
1946-2009| 38 24 S| na

1950-2009

1951-2009 22
| 1947-2009 na.
1548-2009 57

1951-2009

https://statmodeling.stat.columbia.edu/2013/04/16/memo-to-reinhart-and-rogoff-i-think-its-best-to-admit-your-errors-and-go-on-from-there/

Other things to consider -

e Common closed formats used in social science
DTA — many versions, non-retrocompatible
SAV / POR — common for surveys

e Encoding issues accents showing up as €
UTF-8 — gold standard, successor of...

ASCII, 1SO-8859-1 — oldschool

e APIs, like Web scraping, require writing up queries, with
e.g. SPARQL, and learning how to read the ‘response’

https://www.w3.org/TR/rdf-sparql-query/

Tidy data principles

Tidyverse

R packages for data
sclence

The tidyverse is an opinionated
collection of R packages designed for
data science. All packages share an

underlying design philosophy, grammar,

and data structures.

Install the complete tidyverse with:

install.packages("tidyverse")

https://www.tidyverse.org/

©dplyr

Overview

dplyr is a grammar of data manipulation, providing a consistent set of verbs that

help you solve the most common data manipulation challenges:

e mutate() adds new variables that are functions of existing variables
e select() picksvariables based on their names.

e filter() picks cases based on theirvalues.

e summarise() reduces multiple values down to a single summary.

* arrange() changes the ordering of the rows.

dplyr provides alternatives to base R functions that apply to data frames

it relies on the tibble format, which are enhanced data frames

https://dplyr.tidyverse.org/index.html
https://dplyr.tidyverse.org/articles/base.html
https://tibble.tidyverse.org/

Tidy-data-oriented packages

See the tidyverse series, which also includes ggplot2
e Datal/O with readr, readxl, haven

o Used internally by rio

o Fall back to foreign or other packages if need be
e Dataset manipulation with dplyr

o Related dataset object type: tibble

o Similar object type for time series: tsibble

e Model results manipulation with broom and tidymodels

https://www.tidyverse.org/
https://ggplot2.tidyverse.org/
https://readr.tidyverse.org/
https://readxl.tidyverse.org/
https://haven.tidyverse.org/
https://cran.r-project.org/package=rio
https://cran.r-project.org/package=foreign
https://dplyr.tidyverse.org/
https://tibble.tidyverse.org/
https://tsibble.tidyverts.org/
https://broom.tidyverse.org/
https://rviews.rstudio.com/2019/06/19/a-gentle-intro-to-tidymodels/

Like families, are all

alike but every messy dataset is
messy in its own wavy.

Hadley Wickham

http://r4ds.had.co.nz/tidy-data.html

In a tidy
data set:

variables

11

Each variable is saved
in its own column

000000

observations

Tidy data complements R’s vectorized
operations. R will automatically preserve
observations as you manipulate variables.

Each observationis No other format works as intuitively with R.
saved in its own row

split-apply-combine

000000
000000
000000

values

M x A

AL

https://r4ds.had.co.nz/tidy-data.html
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
http://vita.had.co.nz/papers/plyr.html

‘Long’ v. ‘wide’ data

Country gdp1980 gdp1990 gdp2000
AA 100 107 80
CC 100 102 NA
DD 100 103 105
—
Country Variable Year Value
Above: iR {05l often
AA GDP 1980 100 . .
AA CDP 1990 107 found in official datasets (e.g.
AA GDP 2000 80 OECD time series)
K114 long format RIS
cC GDP 1980 100 human-readable but much
cC GDP 1990 162 easier to manipulate
CC GDP 2000 NA
DD GDP 1980 160 Fictional data representing relative
DD GDP 1930 103 GDP growth rates, base year 1980
DD GDP 2000 105

Reshaping (pivoting)

“country | year cases [N couriy 155 2000

Afghanistan
Afghanistan
Brazil
Brazil
China
China

1989
2000
1999
2000
1999
2000

745 2666
2666 Brazil 37737 80488
37737% 212258 213766

80488
212258

213766 table4

https://r4ds.had.co.nz/tidy-data.html

Splitting (separating)

country year rate oy cass poputen

Afghanistan 1999 745 /19987071 Afghanistan 1999 19987071
Afghanistan 2000 2666 / 20595360 Afghanistan 2000 2666 20595360
Brazil 1999 37737 / 172006362 Brazil 1999 37737 172006362
Brazil 2000 80488 / 174504898 Brazil 2000 80488 174504898
China 1999 212258 / 1272915272 China 1999 212258 1272915272

China 2000 213766 / 1280428583 China 2000 213766 1280428583

https://r4ds.had.co.nz/tidy-data.html

Merging (joining)

N | = | key

x1

X2

https://r4ds.had.co.nz/relational-data.html

Merging (joining)

full_join(x, y) right_join(x, y)

@ inner—jOin(x, y) @ left_jOin(X, y>

https://r4ds.had.co.nz/relational-data.html

Practice session

e e S " dlection European Election Studies

studies

Home European Election Studies EES Study Components Bibliography

Voter Study 2019

Home \ European Election Studies \ EES 2019 Study \ Voter Study 2019

Research Design

The 2019 European Election Study (EES) Voter Study is 2 post-election study, conducted in all
member states after the elections to the European Parliament were held between 23 and 26 M
2019.

The EES 2019 Voters Study was generously funded by the Volkswagen Foundation. Additional ,
from the MZES at the University of Mannheim and the Amsterdam Center for European Studies
the University of Amsterdam supported planning and realization of the study. The survey was

conducted by Gallup International. For the first time in the history of EES, the data collection \

http://europeanelectionstudies.net/european-election-studies/ees-2019-study/voter-study-2019

Q10 We have a number of parties in <country> each of which would like to get your vote. How
probable is it that you will ever vote for the following parties? Please answer on a scale where 0 means
"not at all probable" and 10 means "very probable".

[PARTY LIST C, PTV list up to 10 parties]

<Source: EES2014 QPP12>

0 112(314 |56 |7 (8|9 10 Don’t know
not at very the party
all proba-
probable ble
Party 1 0 11213/4|5[6|71[8]9 10 98
Party 2 0 11213/4 | 5[6 |7 1(8]9 10 98
Party 3 0 11213/4|5([617/(8]9 10 98
Party 4 0 11213(/4 |5([6]7([8]9 10 98
Party 5 0 11213/4 15617 (8]9 10 98
Party 6 0 11213/4|5(617(8]9 10 98
Party 7 0 11213/4 15617 1(8]9 10 98
Party 8 0 11213]4 15167 1]8]9 10 98
Party 9 0 11213/4|5[6 |7 8|9 10 98
Party 10 0 11213/4 | 5[6 171819 10 98

http://europeanelectionstudies.net/wp-content/uploads/2019/09/2019-EES-post-electoral-survey-Master-quesitionnaire.pdf

Useful resources

Data Management in R: A Guide for
Social Scientists

Elff, Martin. 2020. Data Management with R: A Guide for Social Scientists. Lon-
don: SAGE Publications.

This page provides material to accompany my recent book Data Management in R: A
Guide for Social Scientists, which is being published by Sage Publications. The material
is organised into different pages each corresponding to a chapter of the book:

= Introduction

= Building Blocks of Data

= Data Frames and their Management
= Data Tables and the “Tidyverse”

= Social Science Surveys

= Data from Complex Samples

s Dates, Times, and Time Series

= Spatial and Geographical data

= Text as Data

https://www.elff.eu/publications/data-management-r/

Data Import : : CHEAT SHEET

R's tidyverse is built around tidy data stored
in tibbles, which are enhanced data frames.

The front side of this sheet shows
how to read text files into R with

readr.

The reverse side shows how to

create tibbles with tibble and to

layout tidy data with tidyr.
OTHER TYPES OF DATA

Try one of the following packages to import
other types of files

« haven - SPSS, Stata, and SAS files
« readxl - excel files {.xls and .xlsx)
« DBI-databases

+ jsonlite - json

« xml2- XML

« httr-Web APIs

« rvest- HTML (Web Scraping)

Save Data

Save x, an R object, to path, afile path, as:

Comma delimited file
write_csv(x, path, na = "NA", append = FALSE,
col_names = lappend)

File with arbitrary delimiter

write_delim(x, path, delim="", na = "NA",
append = FALSE, col_names = !append)
CSV for excel

write_excel_csv(x, path, na="NA", append =
FALSE, col_names = !append)
String to file
write_file(x, path, append = FALSE)
String vector to file, one element per line
write_lines(x,path, na="NA", append = FALSE)
Object to RDS file
write_rds(x, path, compress = c("none", "gz",
" bZ2", "XZ_], .")
Tab delimited files
write_tsv(x, path, na = "NA", append = FALSE,
col_names = !append)

eStudio

Read Tabular Data

read_*(file, col_names = TRUE, col_types = NULL, locale = default_locale(), na=c("", "NA"),
quoted_na=TRUE, comment ="", trim_ws = TRUE, skip =0, n_max = Inf, guess_max = min(1000,

n_max}, progress = interactive(})

N ry Comma Delimited Files
a,bc ??? read_csv("file.csv")
1,23 > 4 5 NA To make file.csv run:
4.5.NA write_filefx="a,b,c\n1,2,3\n4,5 NA", path = "file.csv")
EJMEIES Semi-colon Delimited Files
abic > I read_csv2("file2.csv")
1,2;3 4 5 NA write_file{x = "a;b,c\n1;2,3\n4;5,NA", path = *file2.csv")
4;5:NA
— Files with Any Delimiter
alble ENEAES read_delim("file.txt", delim ="|")
1t 23 write_file(x = "alb|c\n1|2|3\n4|S|NA", path = “file txt")
o | —> HEE _filefx="alblc\n1|2[3\n4I5INA', p
4|5|NA Fixed Width Files
iy read_fwf("file.fwf", col_positions =c(1, 3, 5))
a b= ?I;]? write_file{x="a b c\n1 2 3\n4 5 NA", path = "file.fwf")
123 4 5 NA Az "
45 NA Tab Delimited Files
read_tsv("file.tsv") Also read_table().
write_file{x = "a\tb\tc\n 1\t2\t3\n4\tS\NA', path = *file.tsv")
USEFUL ARGUMENTS
Example file nnn Skip lines
write_file("a,b,c\n1,2,3\n4,5 NA" "file.csv") a4 5 na read_csvif skip=1)
f < "file.csv"
No header nnn Read in a subset
read_csv(f, col_names = FALSE) 1 2 3 read_csvif. n_max=1)
Provide header

1
4
 x |
A
1
4

u-rouH "
;anou 2w

Read Non-Tabular

Read a file into a single string

read_file(file, locale = default_locale(})

Read each line into its own string
read_lines(file, skip=0, n_max=

locale = default_locale(), progress = interactive())

Read Apache style log files

read_log(file, col_names = FALSE, col_types = NULL, skip =0, n_max = -1, progress = interactive())

read_csv(f, col_names =¢("x", "y", "z"))

- These functions share the common arguments:

4 5 NA

Data

Read a file into a raw vector
read_file_raw(file)

Read each line into a raw vector
read_lines_raw(file, skip =0, n_max=-1L,

1L, na = character(), [o SKIf
progress = interactive())

KNI Missing Values
NA 2 3 read_csv(f,na=c("1",""))

Data types

readr functions guess

the

T, W .
=

readr
]

types of each column and

convert types when appropriate (but will NOT
convert strings to factors automatically)

A message shows the type of each column in the

result.

Parsed wifh column specification:
cols(.

age = col_integer(), ageisan
sex = col_character(), CLAGAL

##
)

earn = col_double()
sexisa
earn is a double (numeric) A character

1. Use problems() to diagnose problems.
x <-read_csv("file.csv"); problems(x)

2. Use a col_ function to guide parsing.

.

col_guess() the default

col_character()

col_double(), col_euro_double()
col_datetime(format = ") Also
col_date(‘ormat = "), col_time(format = ")
col_factor(levels, ordered = FALSE)
col_integer()

col_logical()

col_number(), col_numeric()

col_skip()

x <-read_csv("file.csv", col_types = cols(
A=col_double(),
B = col_logical(),

C = col_factor()))

3. Else, read in as character vectors then parse
with a parse_ function.

.

parse_guess()
parse_character()

parse_datetime() Also parse_date() and
parse_time()

parse_double()
parse_factor()
parse_integer()
parse_logical()
parse_number()

X$A <- parse_number(x3A)

RStudio® is a tradernark of RStudio, Inc. « CC BY SA RStudio » info@rstudio.com « 844-448-1212 « rstudio.com « Learn more at tidyverse.org « readr 1.1.0+ tibble 12,12« tidyr 0.6.0+ Updated: 2017-01

https://github.com/rstudio/cheatsheets/raw/master/data-import.pdf

Data Transformation with dplyr : : CHEAT SHEET

dplyr functions work with pipes and expect tidy data. In tidy data:

-—>

il

Each variableisin Each observation, or
its own column case, is in its own row

R
y pipes

X %>% f(y)
becomes f(x,y)

Summarise Cases

These apply summary functions to columns to create a new
table of summary statistics. Summary functions take vectors as
input and return one value (see back).

. summary function
LU 1 summarise(.data, ...
WEE Compute table of summaries.
summarise(mtcars, avg = mean(mpg)}

count(x, ..., wt = NULL, sort = FALSE)

(T Count number of rows in each group defined
B by the variables in ... Also tally().
count{iris, Species)
VARIATIONS

summarise_all() - Apply funs to every column.
summarise_at() - Apply funs to specific columns.
summarise_if() - Apply funs to all cols of one type.

Group Cases

Use group_by() to create a "grouped" copy of a table.
dplyr functions will manipulate each "group" separately and
then combine the results.

mum NEE mtcars %>%
CEE eroup_by(cyl) %%
= ~unm summarise(avg = mean(mpg))
P - mm
" 7]

group_by(.data, ..., add = ungroup(x, ...)

FALSE) Returns ungrouped copy
Returns copy of table of table.
grouped by ... ungroup(g_iris)

g_iris < group_by(iris, Species)

eStudio

Manipulate Cases

EXTRACT CASES
Row functions return a subset of rows as a new table.

EEE =EN filter(.data, ...) Extract rows that meet logical

criteria. filter(iris, Sepal.Length > 7}

EER _ mEE distinct(.data, ..., keep_all = FALSE) Remove
L rows with duplicate values.

anm distinct(iris, Species)

— sample_frac(tbl, size = 1, replace = FALSE,

NEN _, NEE weight = NULL, .env = parent.frame(}) Randomly

select fraction of rows.
sample_frac(iris, 0.5, replace = TRUE)

sample_n(tbl, size, replace = FALSE, weight =
NULL, .env = parent.frame()) Randomly select
size rows. sample_nfiris, 10, replace = TRUE)

slice(.data, ...) Select rows by position.
mEN __wmmm slicefiris, 10:15)

top_n(x, n, wt) Select and order top n entries (by
group if grouped data). top_n(iris, 5, Sepal.Width)

Logical and boolean operators to use with filter()

is.naf) %in% |
lis.na() ! &
See ?base::logic and 2Comparison for help.

< <= xor()

> >=

ARRANGE CASES

arrange(.data, ...) Order rows by values of a

HER__ anm
¥ column or columns {low to high), use with

LU desc() to order from high to low.
wmm arrange{mtcars, mpg)
arrange(mtcars, desc(mpg))
ADD CASES

WMm _, mew add_row(.data, ..., .before = NULL, .after = NULL)
Add one or more rows to a table.

add_row({faithful, eruptions = 1, waiting = 1)

Manipulate Variables

EXTRACT VARIABLES
Column functions return a set of columns as a new vector or table.

RER pull(.data, var=-1) Extract column values as
- avector. Choose by name or index.
pullfiris, Sepal.Length)
mEE = select(.data, ...)

- Extract columns as a table. Also select_if().
select(iris, Sepal.Length, Species)

Use these helpers with select (),
e.q. select(iris, starts_with("Sepal”))

contains(match) num_range(prefix, range) :, e.g. mpg:cyl
ends_with(match) one_of{...) -, e.g, -Species
matches(match) starts_with(match)

MAKE NEW VARIABLES

These apply vectorized functions to columns. Vectorized funs take
vectors as input and return vectors of the same length as output
(see back).

- vectorized function

MW mees mutate(.data, ...)
Compute new column(s).
mutate{mtcars, gpm=1/mpg)

transmute(.data, ...)
Compute new column(s}, drop others.
transmute(mtcars, gpm = 1/mpg)

RN _ =

W8 mmme mutate_all(tbl, .funs,...) Apply funs to every
> column. Use with funs(). Also mutate_if().
mutate_all{faithful, funsflog(.), log2(.})}
mutate_if{iris, is.numeric, funsflog(.)})

mutate_at(.tbl, .cols, .funs, ...) Apply funs to
specific columns. Use with funs(), vars() and
the helper functions for select().
mutate_atfiris, vars(-Species), funs{log(.)})

N _, NN

mEm_, mume add_column(.data, ..., .before = NULL, .after =
NULL) Add new column(s). Also add_count(),
add_tally(). add_column(mtcars, new =1:32)

rename(.data, ...) Rename columns.

EEE_ SuN
renamel(iris, Length = Sepal.Length)

RStudio® is a trademark of RStudio, Inc. « CC BY SA RStudio « info@rstudio.com « 844-448-1212 « rstudio.com « Learn maore with browseVignettes(package = ¢{"dplyr”, "tibble"|) » dplyr 0.7.0+ tibble 1.2.0 « Updated: 2017-03

https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf

String manipulation with stringr : : CHEAT SHEET

The stringr package provides a set of internally consistent tools for working with character strings, i.e. sequences of characters surrounded by quotation marks.

Detect Matches

| | TRUE
a TRUE
-»> FALSE
i TRUC
8 1
El 2
-»> 3
i
9
1] 3
-
] 1
" 2
] 24
. ey a7
NA NA
' 34

str_detect(string, pattern) Detect the
presence of a pattern match in a string.
str_detect{fruit, "a”)

str_which(string, pattern) Find the indexes of
strings that contain a pattern match.
str_which(fruit, “a")

str_count(string, pattern) Count the number
of matches in a string.
str_count(fruit, "a")

str_locate(string, pattern) Locate the
positions of pattern matches in a string. Also
str_locate_all. str_locate(fruit, "a”)

Mutate Strings

0 U B
v
o

—

e

ASTRING

astring

astring

ASTRING

astring

AString

GStudio

str_sub() <- value. Replace substrings by
identifying the substrings with str_sub() and
assigninF into the results.

str_sub(fruit, 1, 3) <- "str"

str_replace(string, pattern, replacement)
Replace the first matched pattern in each
string. str_replace(fruit, "a", "-")

str_replace_all(string, pattern,
replacement) Replace all matched patterns
in each string. str_replace_all(fruit, "a*, *-")

str_to_lower(string, locale = "en")? Convert
strings to lower case.
str_to_lower{sentences)

str_to_upper(string, locale = "en"}! Convert
strings to upper case.
str_to_upper(sentences)

str_to_title(string, locale = "en")! Convert
strings to title case. str_to_title{sentences)

RStudio® is a trademark of RStudio, Inc. «

stringf

Subset Strings

0 str_sub(string, start = 1L, end = -1L) Extract
= substrings from a character vector.

B str_subffruit, 1, 3); str_sub(fruit, -2)
5]

str_subset(string, pattern) Return only the
., I' strings that contain a pattern match.
3 str_subset{fruit, "b")

str_extract(string, pattern) Return the first
pattern match found in each string, as a vector.
Also str_extract_all to return every pattern
match. str_extract(fruit, "[aeiou]”)

m N str_match(string, pattern) Return the first
LY pattern match found in each string, as a
E] matrix with a column for each () group in
pattern. Also str_match_all.
str_match(sentences, “(a|the) ([*]+}")

Join and Split

B | str_c(..., sep ="", collapse = NULL) Join
> = multiple strings into a single string.
n str_c(letters, LETTERS)

str_c(..., sep="", collapse = NULL) Collapse
- el a vector of strin;s into a single string.
str_c(letters, collapse ="")

str_dup(string, times) Repeat strings times
times. str_dup(fruit, times =2}

str_split_fixed(string, pattern, n) Splita
vector of strings into a matrix of substrings
(splitting at occurrences of a pattern match).
Also str_split to return a list of substrings.
str_split_fixed(fruit, " ', n=2)

bat) str_glue(..., .sep="", .envir = parent.frame())
v Create a string from strings and {expressions}
= to evaluate. str_glue("Piis {pi}")

str_glue_data(.x, ..., .sep="", .envir=
N | arent.frame(), .na = "NA") Use a data frame,
N _, =N ist, or environment to create a string from
= = strings and {expressions} to evaluate.
str_glue_data(mtcars, "frownames(mtcars)}
has {hp} hp")

Manage Lengths

[PV N

str_length(string) The width of strings (i.e.
number of code points, which generally equals
the number of characters). str_length(fruit)

str_pad(string, width, side = c("left", "right",
"both"), pad =" ") Pad strings to constant
width. str_pad(fruit, 17)

str_trunc(string, width, side = c("right", "left",
"center”), ellipsis = "...") Truncate the width of
strings, replacing content with ellipsis.
str_trunc{fruit, 3?

str_trim(string, side = c("both", "left", "right"))
Trim whitespace from the start and/or end of a
string. str_trim(fruit)

Order Strings

=
%
=]

[

o=
R

str_order(x, decreasing = FALSE, na_last =
TRUE, locale = "en", numeric = FALSE, ...)! Return
the vector of indexes that sorts a character
vector. x/str_order{x}]

str_sort(x, decreasing = FALSE, na_last = TRUE,
locale = "en", numeric = FALSE, ...)! Sorta

= character vector.
= str_sort{x)
Helpers
str_conv(string, encoding) Override the
encoding of a string. str_conv(fruit,"1S0-8859-1")
apple str_view(string, pattern, match = NA) View
banana HTML rendering of first regex match in each
pear string. str_view(fruit, “[aeiou]")
apole str_view_all(string, pattern, match = NA) View
banana HTML rendering of all regex matches.
poar str_view_all(fruit, "[aeiou]”)

str_wrap(string, width = 80, indent = 0, exdent
=0) Wrap strings into nicely formatted
paragraphs. str_wrap(sentences, 20}

1 See bit.ly/I1SO639-1 for a complete list of locales

CC BY SA RStudic « info@rstudio com « 844-448-1212 « rstudio.com « Learn more at stringrtidyverse.org « Diagrams from @LVaudor W « stringr 1.2.0+ Updated: 2017-10

https://github.com/rstudio/cheatsheets/raw/master/strings.pdf

Full-on treatments of the topic

Books

e Baumer et al.,, Modern Data Science with R

e Grolemund and Wickham, R for Data Science

e Fogarty, Quantitative Social Science Data with R
Courses

e Data for Data Scientists (LSE)

e Data Science for Economists (University of Oregon)

e Introduction to Data Science (Duke)

https://mdsr-book.github.io/mdsr2e/
https://r4ds.had.co.nz/
http://uk.sagepub.com/en-gb/eur/quantitative-social-science-data-with-r/book257236
https://lse-my472.github.io/
https://github.com/uo-ec607/lectures
http://www2.stat.duke.edu/courses/Spring18/Sta199/

Canonical reading

Grolemund and Wickham, R for Data Science
e ch.5 on data transformation with dplyr

e ch. 6 on writing workflows (scripts)

e ch. 9-16 on data wrangling
o see esp. ch. 12 (tidy data)

o also covers strings, factors, dates

R for Data
Sclence

IIIIIIIII , MODEL, TRANSFORM, TIDY, AND IMPORT DATA

Hadley Wickham &
Garrett Grolemund

Note that, for very large datasets, there are faster ways to perform some of the

operations covered here, using e.g. data.table or collapse.

https://r4ds.had.co.nz/
https://dplyr.tidyverse.org/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://cran.r-project.org/package=data.table/vignettes/datatable-intro.html
https://sebkrantz.github.io/collapse/

Similar treatments

INTRODUCTION
TO
DATA SCIENCE

Irizarry, Introduction to Data Science

e ch. 4 on the tidyverse

e ch. 5 on importing data

Peng, Exploratory Data Analysis with R o e

e ch. 3 on data managements with dplyr

e ch. 4-good data analysis principles

https://rafalab.github.io/dsbook/
https://bookdown.org/rdpeng/exdata/
https://dplyr.tidyverse.org/
https://rafalab.github.io/dsbook/
https://rafalab.github.io/dsbook/
https://bookdown.org/rdpeng/exdata/
https://bookdown.org/rdpeng/exdata/

Videos to watch it happen

e RStudio (Grolemund, Wickham) has a series of videos on
Data Wrangling with R and the Tidyverse

See esp. the ‘dplyr’ and ‘two datasets’ episodes

e Hadley Wickham has an excellent tidy data tutorial that
makes use of some the packages covered today

See also his Managing Many Models tutorial

e David Robinson films hour-long examples of how to
resolve Tidy Tuesday challenges with dplyr et al.

See also his Ten Tremendous Tricks in the Tidyverse

https://www.youtube.com/watch?v=jOd65mR1zfw&list=PL9HYL-VRX0oQOWAFoKHFQAsWAI3ImbNPk
https://www.youtube.com/watch?v=Zc_ufg4uW4U&list=PL9HYL-VRX0oQOWAFoKHFQAsWAI3ImbNPk&index=3
https://www.youtube.com/watch?v=AuBgYDCg1Cg&list=PL9HYL-VRX0oQOWAFoKHFQAsWAI3ImbNPk&index=4
https://www.youtube.com/watch?v=D48JHU4llkk
https://www.youtube.com/watch?v=rz3_FDVt9eg
https://www.youtube.com/user/safe4democracy/videos
https://github.com/rfordatascience/tidytuesday
https://www.youtube.com/watch?v=NDHSBUN_rVU

Various links

e Look at e.g. Quantitative Social Science Data for an
overview of what kind of data already exist

e For lots of example code that does data wrangling, take
a look at how Party Facts is built

e On how to use surveys with complex weighting designs,
see the wonderful Analyze Survey Data for Free

e Read Automated Data Collection with R if you are
interested in Web scraping (and text mining)

o See also Irizarry, Introduction to Data Science, ch. 23,
for a shorter overview of Web scraping

https://f.briatte.org/teaching/quanti/data/
https://github.com/hdigital/partyfactsdata
http://asdfree.com/
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-111883481X.html
https://rafalab.github.io/dsbook/web-scraping.html

Activity / Homework

For those who want a problem

1. Download the ‘European Mood’ Indicator by Guinaudeau
and Schnatterer, and load it in R

2. Reshape the data in order to get the following variables:
year, semester, country, mood

3. Can you spot what must be a data entry error in one of
the variables? Write the code to fix it

4. Use ggplot2 to reproduce as closely as possible the plot
on the next slide (anticipating our next session together)

https://doi.org/10.1017/S0007123416000776
https://ggplot2.tidyverse.org/

/\M it shouldn't be too hard to guess what
V\W' M the blue dot markers stand for...

For those who prefer a 1044 problem

Complete Steps 1-3 and forget about Step 4, which is the
harder (most time-consuming) step

Create a ‘decade’ variable measuring, for each country,
the mean and s.d. of EU mood in each decade since 1970

Create a ‘delta’ variable measuring, for each country, the
change in EU mood from one decade to the next

Thanks for your work! | will provide solutions to both
problem sets at the beginning of Session 5.

Thanks for your attention

See you again for
Data Visualization

Bonus: Databases

User information User activity

user.id country agecat gender ppacat urlid wuser.id timestamp action
userl DE 35-44 F NULL urll userl 1483247834 like
user2 Us 25-34 M -1 url2 userl 1483266874 click
user3 BR 25-34 F NULL urll user2 1483276812 share

JOIN ON user_id

GROUP BY (PRIVATE) SUM (z [1 + N(0, a2)] |x)

url.id year-month country agecat gender ppacat view click share like
urll 2017-01 DE 35-44 F NULL 548 44 -4 68
urll 2017-01 Us 25-34 M -1 4736 199 111 152

Breakdown Table

url.id clean_ url share.title ... hate.speech top.country
urll www.urll.com/hi.html Hello 0 DE

url2 www.url2.com/hi.html Hi 4 US
URL Attributes Table

Accessible data

https://twitter.com/SolomonMg/status/1227985657538187265

Databases (DBs)

e Databases are tables with relational schemes
o Rely on shared ‘id’ column between tables
o Optimised for speed with large datasets
o Requires learning a DB query language

e Two possible ways to go
o SQL — kinda row-oriented, many variants
o MongoDB — column-oriented, fast

e For an efficient introduction, see Grolemund and
Wickham, R for Data Science, ch. 13 (relational data)

J

https://eev.ee/blog/2016/08/05/storing-pok%C3%A9mon-without-sql/
https://r4ds.had.co.nz/

See Databases using R for and dbplyr

e ODBC/DBI-driven (best practices)

O

O

O

O

O

e MonetDB

O

O

Microsoft SQL Server
MySQL

Oracle

PostgreSQL

SQLite

MonetDB.R
MonetDBLite

SQL

see github.com/r-dbi
and Jim Hester's slides

see also see also
bigrquery solrium

"f'-‘\ «ﬂ%@
monetdb) Solr

see the tutorials

and many other DB drivers

https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Perl_DBI
https://github.com/jimhester/presentations/blob/master/2016_12_15-CRUG-Database_Best_Practices/CRUG-2016_12_14.Rmd
https://www.monetdb.org/
https://www.monetdb.org/
https://en.wikipedia.org/wiki/SQL
https://github.com/r-dbi
https://github.com/jimhester/presentations/blob/master/2016_12_15-CRUG-Database_Best_Practices/CRUG-2016_12_14.Rmd
https://cloud.google.com/bigquery/
https://github.com/rstats-db/bigrquery
https://github.com/briatte/dsr#2-data-io
https://lucene.apache.org/solr/
https://github.com/ropensci/solrium
https://db.rstudio.com/
https://db.rstudio.com/dplyr/

